高一物理必修一知识点归纳 第1篇
运动与力
高一物理必修一知识点归纳 第2篇
高一上物理
1.质点(A)
(1)没有形状、大小,而具有质量的点。
(2)质点是一个理想化的物理模型,实际并不存在。
(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。
2.参考系(A)
(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。
(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。
对参考系应明确以下几点:
①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。
②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。
③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系
3.路程和位移(A)
(1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。
(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。
(3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。
(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。
4、速度、平均速度和瞬时速度(A)
(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。
(2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s, 则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。
(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率
5、匀速直线运动(A)
(1) 定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。
根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。
(2) 匀速直线运动的x—t图象和v-t图象(A)
(1)位移图象(x-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体 运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。
(2)匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。
由图可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一个质点沿正方向以20m/s的速度运动,另一个反方向以10m/s速度运动。
6、加速度(A)
(1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时间的比值,定义式:
(2)加速度是矢量,它的方向是速度变化的方向
(3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动; 若加速度的方向与速度方向相反,则则质点做减速运动.
7、用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A)
1、实验步骤:
(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路
(2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码.
(3)将纸带固定在小车尾部,并穿过打点计时器的限位孔
(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带.
(5)断开电源,取下纸带
(6)换上新的纸带,再重复做三次
8、匀变速直线运动的规律(A)
(1).匀变速直线运动的速度公式vt=vo+at(减速:vt=vo-at)
(2). 此式只适用于匀变速直线运动.
(3). 匀变速直线运动的位移公式s=vot+at2/2(减速:s=vot-at2/2)
(4)位移推论公式: (减速: )
(5).初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: s = aT2 (a----匀变速直线运动的加速度 T----每个时间间隔的时间)
9、匀变速直线运动的x—t图象和v-t图象(A)
10、自由落体运动(A)
(1) 自由落体运动 物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。
(2) 自由落体加速度
(1)自由落体加速度也叫重力加速度,用g表示.
(2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下.其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。
(3)通常情况下取重力加速度g=10m/s2
(3) 自由落体运动的规律vt=gt. H=gt2/2, vt2=2gh
11、力(A)1.力是物体对物体的作用。⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。
2.力的三要素:力的大小、方向、作用点。
3.力作用于物体产生的两个作用效果。使受力物体发生形变或使受力物体的运动状态发生改变。
4.力的分类:
⑴按照力的性质命名:重力、弹力、摩擦力等。
⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。
12、重力(A)
1.重力是由于地球的吸引而使物体受到的力
⑴地球上的物体受到重力,施力物体是地球。 ⑵重力的方向总是竖直向下的。
2.重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。
① 质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。
② 一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。
3.重力的大小:G=mg
13、弹力(A)
1.弹力⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。
⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。
2.弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。
3.弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大.
弹簧弹力:F = Kx (x为伸长量或压缩量,K为劲度系数)
4.相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定.
14、摩擦力(A)
(1 ) 滑动摩擦力:
说明 : a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b、 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关.
(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.
大小范围: O<f静 fm (fm为最大静摩擦力,与正压力有关)
说明:
a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
15、力的合成与分解(B)
1.合力与分力 如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。
2.共点力的合成
⑴共点力:几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
⑵力的合成方法 求几个已知力的合力叫做力的合成。
a.若 和 在同一条直线上
① 、 同向:合力 方向与 、 的方向一致
② 、 反向:合力 ,方向与 、 这两个力中较大的那个力同向。
b. 、 互成θ角——用力的平行四边形定则
平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F1-F2 F F1 +F2
(3) 合力可以大于分力、也可以小于分力、也可以等于分力
(4)两个分力成直角时,用勾股定理或三角函数。
16、共点力作用下物体的平衡(A)
1.共点力作用下物体的平衡状态
(1)一个物体如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态
(2)物体保持静止状态或做匀速直线运动时,其速度(包括大小和方向)不变,其加速度为零,这是共点力作用下物体处于平衡状态的运动学特征。
2.共点力作用下物体的平衡条件
共点力作用下物体的平衡条件是合力为零,亦即F合=0
(1)二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。
(2)三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡
(3)若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:
F合x= F1x+ F2x + ………+ Fnx =0
F合y= F1y+ F2y + ………+ Fny =0 (按接触面分解或按运动方向分解)
19、力学单位制(A)
1.物理公式在确定物理量数量关系的同时,也确定了物理量的单位关系。基本单位就是根据物理量运算中的实际需要而选定的少数几个物理量单位;根据物理公式和基本单位确立的其它物理量的单位叫做导出单位。
2.在物理力学中,选定长度、质量和时间的单位作为基本单位,与其它的导出单位一起组成了力学单位制。选用不同的基本单位,可以组成不同的力学单位制,其中最常用的基本单位是长度为米(m),质量为千克(kg),时间为秒(s),由此还可得到其它的导出单位,它们一起组成了力学的国际单位制。
高一物理必修一知识点归纳 第3篇
物理(必修一)——知识考点归纳 第一章.运动的描述 考点一:时刻与时间间隔的关系 时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如: 第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。 区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。 考点二:路程与位移的关系 位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。 考点三:速度与速率的关系 速度 速率 物理意义 描述物体运动快慢和方向的物理量,是矢 量 描述物体运动快慢的物理量,是 标量 分类 平均速度、瞬时速度 速率、平均速率(=路程/时间) 决定因素 平均速度由位移和时间决定 由瞬时速度的大小决定 方向 平均速度方向与位移方向相同;瞬时速度 方向为该质点的运动方向 无方向 联系 它们的单位相同(m/s),瞬时速度的大小等于速率 考点四:速度、加速度与速度变化量的关系 速度 加速度 速度变化量 意义 描述物体运动快慢和方向的物理量 描述物体速度变化快 慢和方向的物理量 描述物体速度变化大 小程度的物理量,是 一过程量 定义式 单位 m/s m/s2 m/s 决定因素 v的大小由v0、a、t 决定 a不是由v、△v、△t 决定的,而是由F和 m决定。 由v与v0决定, 而且 ,也 由a与△t决定 方向 与位移x或△x同向, 即物体运动的方向 与△v方向一致 由 或 决定方向 大小 ① 位移与时间的比值 ② 位移对时间的变化 率 ③ x-t图象中图线 上点的切线斜率的大 小值 ① 速度对时间的变 化率 ② 速度改变量与所 用时间的比值 ③ v—t图象中图线 上点的切线斜率的大 小值 考点五:运动图象的理解及应用 由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。 1. 理解图象的含义 (1) x-t图象是描述位移随时间的变化规律 (2) v—t图象是描述速度随时间的变化规律 2. 明确图象斜率的含义 (1) x-t图象中,图线的斜率表示速度 (2) v—t图象中,图线的斜率表示加速度 第二章.匀变速直线运动的研究 考点一:匀变速直线运动的基本公式和推理 1. 基本公式 (1) 速度—时间关系式: (2) 位移—时间关系式: (3) 位移—速度关系式: 三个公式中的物理量只要知道任意三个,就可求出其余两个。 利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同, 解题时要有正方向的规定。 2. 常用推论 (1) 平均速度公式: (2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度: (3) 一段位移的中间位置的瞬时速度: (4) 任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等): 考点二:对运动图象的理解及应用 1. 研究运动图象 (1) 从图象识别物体的运动性质 (2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义 (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义 (4) 能认识图象与坐标轴所围面积的物理意义 (5) 能说明图象上任一点的物理意义 2. x-t图象和v—t图象的比较 如图所示是形状一样的图线在x-t图象和v—t图象中, x-t图象 v—t图象 ①表示物体做匀速直线运动(斜率表示速度) ①表示物体做匀加速直线运动(斜率表示加速度) ②表示物体静止 ②表示物体做匀速直线运动 ③表示物体静止 ③表示物体静止 ④ 表示物体向反方向做匀速直线运动;初 位移为x0 ④ 表示物体做匀减速直线运动;初速度为 v0 ⑤ 交点的纵坐标表示三个运动的支点相遇时 的位移 ⑤ 交点的纵坐标表示三个运动质点的共同速度 ⑥t1时间内物体位移为x1 ⑥ t1时刻物体速度为v1(图中阴影部分面积表 示质点在0~t1时间内的位移) 考点三:追及和相遇问题 1.“追及”、“相遇”的特征 “追及”的主要条件是:两个物体在追赶过程中处在同一位置。 两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。 2.解“追及”、“相遇”问题的思路 (1)根据对两物体的运动过程分析,画出物体运动示意图 (2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中 (3)由运动示意图找出两物体位移间的关联方程 (4)联立方程求解 3. 分析“追及”、“相遇”问题时应注意的问题 (1) 抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。 (2) 若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动 4. 解决“追及”、“相遇”问题的方法 (1) 数学方法:列出方程,利用二次函数求极值的方法求解 (2) 物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解 考点四:纸带问题的分析 1. 判断物体的运动性质 (1) 根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。 (2) 由匀变速直线运动的推论 ,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。 2. 求加速度 (1) 逐差法 (2)v—t图象法 利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a. 第三章 相互作用 考点一:关于弹力的问题 1. 弹力的产出 条件:(1)物体间是否直接接触 (2) 接触处是否有相互挤压或拉伸 2.弹力方向的判断 弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。 (1) 压力的方向总是垂直于支持面指向被压的物体(受力物体)。 (2) 支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。 (3) 绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。 补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。 3. 弹力的大小 (1) 弹簧的弹力满足胡克定律: 。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。 (2) 弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。 考点二:关于摩擦力的问题 1. 对摩擦力认识的四个“不一定” (1) 摩擦力不一定是阻力 (2) 静摩擦力不一定比滑动摩擦力小 (3) 静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向 (4) 摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力 2. 静摩擦力用二力平衡来求解,滑动摩擦力用公式 来求解 3. 静摩擦力存在及其方向的判断 存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。 方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。 考点三:物体的受力分析 1.物体受力分析的方法 (1) 方法 (2) 选择 2.受力分析的顺序 先重力,再接触力,最后分析其他外力 3.受力分析时应注意的问题 (1) 分析物体受力时,只分析周围物体对研究对象所施加的力 (2) 受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力 (3) 如果一个力的方向难以确定,可用假设法分析 (4) 物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定 (5) 受力分析外部作用看整体,互相作用要隔离 考点四:正交分解法在力的合成与分解中的应用 1. 正交分解时建立坐标轴的原则 (1) 以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上 (2) 一般使所要求的力落在坐标轴上 第四章 牛顿运动定律 考点一:对牛顿运动定律的理解 1. 对牛顿第一定律的理解 (1) 揭示了物体不受外力作用时的运动规律 (2) 牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关 (3) 肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因 (4) 牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例 (5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律 2. 对牛顿第二定律的理解 (1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性 (2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态 (3) 加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度 3. 对牛顿第三定律的理解 (1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力 (2) 指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同 考点二:应用牛顿运动定律时常用的方法、技巧 1. 理想实验法 2. 控制变量法 3. 整体与隔离法 4. 图解法 5. 正交分解法 6. 关于临界问题 处理的基本方法是: 根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本) 考点三:应用牛顿运动定律解决的几个典型问题 1. 力、加速度、速度的关系 (1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系 ,合力只要不为零,无论速度是多大,加速度都不为零 (2) 合力与速度无必然联系,只有速度变化才与合力有必然联系 (3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小 2. 关于轻绳、轻杆、轻弹簧的问题 (1) 轻绳 ① 拉力的方向一定沿绳指向绳收缩的方向 ② 同一根绳上各处的拉力大小都相等 ③ 认为受力形变极微,看做不可伸长 ④ 弹力可做瞬时变化 (2) 轻杆 ① 作用力方向不一定沿杆的方向 ② 各处作用力的大小相等 ③ 轻杆不能伸长或压缩 ④ 轻杆受到的弹力方式有:拉力、压力 ⑤ 弹力变化所需时间极短,可忽略不计 (3) 轻弹簧 ① 各处的弹力大小相等,方向与弹簧形变的方向相反 ② 弹力的大小遵循 的关系 ③ 弹簧的弹力不能发生突变 3. 关于超重和失重的问题 (1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力 (2) 物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重 (3) 物体出于完全失重状态时,物体与重力有关的现象全部消失: ① 与重力有关的一些仪器如天平、台秤等不能使用 ② 竖直上抛的物体再也回不到地面 ③ 杯口向下时,杯中的水也不流出
高一物理必修一知识点归纳 第4篇
第一章运动的描述 第一节认识运动 机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。 运动的特性:普遍性,永恒性,多样性 参考系 1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。 2.参考系的选取是自由的。 1)比较两个物体的运动必须选用同一参考系。 2)参照物不一定静止,但被认为是静止的。 质点 1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。 2.质点条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 3.质点具有相对性,而不具有绝对性。 4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 第二节时间位移 时间与时刻 1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。 △t=t2 t1 2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。 3.通常以问题中的初始时刻为零点。 路程和位移 1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。 2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。 3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。 4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。 第三节记录物体的运动信息 打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器 火花打点,电磁打点记时器 电磁打点);一般打出两个相邻的点的时间间隔是0.02s。 第四节物体运动的速度 物体通过的路程与所用的时间之比叫做速度。 平均速度(与位移、时间间隔相对应) 物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。 v=s/t 瞬时速度(与位置时刻相对应) 瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。 速率≥速度 第五节速度变化的快慢加速度 1.物体的加速度等于物体速度变化(vt v0)与完成这一变化所用时间的比值 a=(vt v0)/t 2.a不由△v、t决定,而是由F、m决定。 3.变化量=末态量值 初态量值……表示变化的大小或多少 4.变化率=变化量/时间……表示变化快慢 5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。 6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。 第六节用图象描述直线运动 匀变速直线运动的位移图象 1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹) 2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同) 3.图象中两图线的交点表示两物体在这一时刻相遇。 匀变速直线运动的速度图象 1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹) 2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。 第二章探究匀变速直线运动规律 第一、二节探究自由落体运动/自由落体运动规律 记录自由落体运动轨迹 1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。 2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广 自由落体运动规律 自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。g=9.8m/s2 重力加速度g的方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。 vt2=2gs 竖直上抛运动 1.处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性) 1.速度公式:vt=v0 gt位移公式:h=v0t gt2/2 2.上升到最高点时间t=v0/g,上升到最高点所用时间与回落到抛出点所用时间相等 3.上升的最大高度:s=v02/2g 第三节匀变速直线运动 匀变速直线运动规律 1.基本公式:s=v0t+at2/2 2.平均速度:vt=v0+at 3.推论:1)v=vt/2 2)S2 S1=S3 S2=S4 S3=……=△S=aT2 3)初速度为0的n个连续相等的时间内S之比: S1:S2:S3:……:Sn=1:3:5:……:(2n 1) 4)初速度为0的n个连续相等的位移内t之比: t1:t2:t3:……:tn=1:(√2 1):(√3 √2):……:(√n √n 1) 5)a=(Sm Sn)/(m n)T2(利用上各段位移,减少误差→逐差法) 6)vt2 v02=2as 第四节汽车行驶安全 1.停车距离=反应距离(车速 反应时间)+刹车距离(匀减速) 2.安全距离≥停车距离 3.刹车距离的大小取决于车的初速度和路面的粗糙程度 4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。可用图象法解题。 第三章研究物体间的相互作用 第一节探究形变与弹力的关系 认识形变 1.物体形状回体积发生变化简称形变。 2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。 按效果分:弹性形变、塑性形变 3.弹力有无的判断:1)定义法(产生条件) 2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。 3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。 弹性与弹性限度 1.物体具有恢复原状的性质称为弹性。 2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。 3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。 探究弹力 1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。 2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。 绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。 弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。 3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。 F=kx 4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。 5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2 第二节研究摩擦力 滑动摩擦力 1.两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。 2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。 3.滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN 4.μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。 5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。 6.条件:直接接触、相互挤压(弹力),相对运动/趋势。 7.摩擦力的大小与接触面积无关,与相对运动速度无关。 8.摩擦力可以是阻力,也可以是动力。 9.计算:公式法/二力平衡法。 研究静摩擦力 1.当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。 2.物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。 3.静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。 4.静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm 5.最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0 N(μ≤μ0) 6.静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。 第三节力的等效和替代 力的图示 1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。 2.图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。 3.力的示意图:突出方向,不定量。 力的等效/替代 1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。 2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。 3.实验:平行四边形定则:P58 第四节力的合成与分解 力的平行四边形定则 1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。 2.一切矢量的运算都遵循平行四边形定则。 合力的计算 1.方法:公式法,图解法(平行四边形/多边形/△) 2.三角形定则:将两个分力首尾相接连接始末端的有向线段即表示它们的合力。 3.设F为F1、F2的合力,θ为F1、F2的夹角,则: F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ) 当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2) 4.1)|F1 F2|≤F≤|F1+F2| 2)随F1、F2夹角的增大,合力F逐渐减小。 3)当两个分力同向时θ=0,合力最大:F=F1+F2 4)当两个分力反向时θ=180 ,合力最小:F=|F1 F2| 5)当两个分力垂直时θ=90 ,F2=F12+F22 分力的计算 1.分解原则:力的实际效果/解题方便(正交分解) 2.受力分析顺序:G→N→F→电磁力 第五节共点力的平衡条件 共点力 如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。 寻找共点力的平衡条件 1.物体保持静止或者保持匀速直线运动的状态叫平衡状态。 2.物体如果受到共点力的作用且处于平衡状态,就叫做共点力的平衡。 3.二力平衡是指物体在两个共点力的作用下处于平衡状态,其平衡条件是这两个离的大小相等、方向相反。多力亦是如此。 4.正交分解法:把一个矢量分解在两个相互垂直的坐标轴上,利于处理多个不在同一直线上的矢量(力)作用分解。 第六节作用力与反作用力 探究作用力与反作用力的关系 1.一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。 2.力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的) 3.平衡力与相互作用力: 同:等大,反向,共线 异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。 牛顿第三定律 1.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。 2.牛顿第三定律适用于任何两个相互作用的物体,与物体的质量、运动状态无关。二力的产生和消失同时,无先后之分。二力分别作用在两个物体上,各自分别产生作用效果。 第四章力与运动 第一节伽利略理想实验与牛顿第一定律 伽利略的理想实验(见P76、77,以及单摆实验) 牛顿第一定律 1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 物体的运动并不需要力来维持。 2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。 4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。 第二、三节影响加速度的因素/探究物体运动与受力的关系 加速度与物体所受合力、物体质量的关系(实验设计见B书P93) 第四节牛顿第二定律 牛顿第二定律 1.牛顿第二定律:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。 2.a=k F/m(k=1)→F=ma 3.k的数值等于使单位质量的物体产生单位加速度时力的大小。国际单位制中k=1。 4.当物体从某种特征到另一种特征时,发生质的飞跃的转折状态叫做临界状态。 5.极限分析法(预测和处理临界问题):通过恰当地选取某个变化的物理量将其推向极端,从而把临界现象暴露出来。 6.牛顿第二定律特性:1)矢量性:加速度与合外力任意时刻方向相同 2)瞬时性:加速度与合外力同时产生/变化/消失,力是产生加速度的原因。 3)相对性:a是相对于惯性系的,牛顿第二定律只在惯性系中成立。 4)独立性:力的独立作用原理:不同方向的合力产生不同方向的加速度,彼此不受对方影响。 5)同体性:研究对象的统一性。 第五节牛顿第二定律的应用 解题思路:物体的受力情况?牛顿第二定律?a?运动学公式?物体的运动情况 第六节超重与失重 超重和失重 1.物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象(视重>物重),物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象(物重)。
高一物理必修一知识点归纳 第5篇
《我们怎样听到声音》习题2
1.人感知声音的基本过程是:外界传来的声音引起__________振动,这种振动经过__________及其他组织传给__________,__________把信号传给大脑,这样人就听到了声音。
2.声音通过__________、__________也能传到听觉神经,引起听觉.声音的这种传导方式叫__________。
3.双耳效应是指人们依靠听觉能够确定发声体的方位。声源定位的主要因素是声音传到两只耳朵的__________和__________的差异。
4.你知道吗?蛇是没有耳朵的。不过,如果蛇将头贴在地面上,头中的一块骨头就会接收到正在接近它的动物活动时发出的声音。由此可见,蛇是利用__________去“倾听”敌人和猎物的。
5.如何进行下列探究活动?
学过本节知识后,有同学提出如下问题:能否通过皮肤、肌肉传导声波,使人听到声音呢?请你设计一个实验,对上述问题给予回答。在你设计实验时,要排除哪些因素的影响,才能得出可靠的、令人信服的结论。
参考答案:
1.鼓膜 听小骨 听觉神经 听觉神经
2.头骨 颌骨 骨传导
3.时刻 强弱
4.骨传导(或固体传声)
5.提示:堵住耳朵,将振动的音叉的尾部先后放在嘴唇、腮等肌肉丰满的部位,看看能否听到声音,该实验中,为了得出可靠的结论,应尽量排除气传导及骨传导等因素的影响。
高一物理必修一知识点归纳 第6篇
加速度,摩擦力,弹力,力的合成分解,牛顿定律。
高一物理必修一知识点归纳 第7篇
高一物理必修1知识总结
第一章运动的描述 第一节认识运动 机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。 运动的特性:普遍性,永恒性,多样性 参考系 1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。 2.参考系的选取是自由的。 1)比较两个物体的运动必须选用同一参考系。 2)参照物不一定静止,但被认为是静止的。 质点 1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。 2.质点条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 3.质点具有相对性,而不具有绝对性。 4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 第二节时间位移 时间与时刻 1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。 △t=t2 t1 2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。 3.通常以问题中的初始时刻为零点。 路程和位移 1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。 2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。 3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。 4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。 第三节记录物体的运动信息 打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器 火花打点,电磁打点记时器 电磁打点);一般打出两个相邻的点的时间间隔是0.02s。 第四节物体运动的速度 物体通过的路程与所用的时间之比叫做速度。 平均速度(与位移、时间间隔相对应) 物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。 v=s/t 瞬时速度(与位置时刻相对应) 瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。 速率≥速度 第五节速度变化的快慢加速度 1.物体的加速度等于物体速度变化(vt v0)与完成这一变化所用时间的比值 a=(vt v0)/t 2.a不由△v、t决定,而是由F、m决定。 3.变化量=末态量值 初态量值……表示变化的大小或多少 4.变化率=变化量/时间……表示变化快慢 5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。 6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。 第六节用图象描述直线运动 匀变速直线运动的位移图象 1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹) 2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同) 3.图象中两图线的交点表示两物体在这一时刻相遇。 匀变速直线运动的速度图象 1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹) 2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。 第二章探究匀变速直线运动规律 第一、二节探究自由落体运动/自由落体运动规律 记录自由落体运动轨迹 1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。 2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广 自由落体运动规律 自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。g=9.8m/s2 重力加速度g的方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。 vt2=2gs 竖直上抛运动 1.处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性) 1.速度公式:vt=v0 gt位移公式:h=v0t gt2/2 2.上升到最高点时间t=v0/g,上升到最高点所用时间与回落到抛出点所用时间相等 3.上升的最大高度:s=v02/2g 第三节匀变速直线运动 匀变速直线运动规律 1.基本公式:s=v0t+at2/2 2.平均速度:vt=v0+at 3.推论:1)v=vt/2 2)S2 S1=S3 S2=S4 S3=……=△S=aT2 3)初速度为0的n个连续相等的时间内S之比: S1:S2:S3:……:Sn=1:3:5:……:(2n 1) 4)初速度为0的n个连续相等的位移内t之比: t1:t2:t3:……:tn=1:(√2 1):(√3 √2):……:(√n √n 1) 5)a=(Sm Sn)/(m n)T2(利用上各段位移,减少误差→逐差法) 6)vt2 v02=2as 第四节汽车行驶安全 1.停车距离=反应距离(车速 反应时间)+刹车距离(匀减速) 2.安全距离≥停车距离 3.刹车距离的大小取决于车的初速度和路面的粗糙程度 4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。可用图象法解题。 第三章研究物体间的相互作用 第一节探究形变与弹力的关系 认识形变 1.物体形状回体积发生变化简称形变。 2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。 按效果分:弹性形变、塑性形变 3.弹力有无的判断:1)定义法(产生条件) 2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。 3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。 弹性与弹性限度 1.物体具有恢复原状的性质称为弹性。 2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。 3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。 探究弹力 1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。 2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。 绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。 弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。 3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。 F=kx 4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。 5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2 第二节研究摩擦力 滑动摩擦力 1.两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。 2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。 3.滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN 4.μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。 5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。 6.条件:直接接触、相互挤压(弹力),相对运动/趋势。 7.摩擦力的大小与接触面积无关,与相对运动速度无关。 8.摩擦力可以是阻力,也可以是动力。 9.计算:公式法/二力平衡法。 研究静摩擦力 1.当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。 2.物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。 3.静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。 4.静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm 5.最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0 N(μ≤μ0) 6.静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。 第三节力的等效和替代 力的图示 1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。 2.图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。 3.力的示意图:突出方向,不定量。 力的等效/替代 1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。 2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。 3.实验:平行四边形定则:P58 第四节力的合成与分解 力的平行四边形定则 1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。 2.一切矢量的运算都遵循平行四边形定则。 合力的计算 1.方法:公式法,图解法(平行四边形/多边形/△) 2.三角形定则:将两个分力首尾相接连接始末端的有向线段即表示它们的合力。 3.设F为F1、F2的合力,θ为F1、F2的夹角,则: F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ) 当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2) 4.1)|F1 F2|≤F≤|F1+F2| 2)随F1、F2夹角的增大,合力F逐渐减小。 3)当两个分力同向时θ=0,合力最大:F=F1+F2 4)当两个分力反向时θ=180 ,合力最小:F=|F1 F2| 5)当两个分力垂直时θ=90 ,F2=F12+F22 分力的计算 1.分解原则:力的实际效果/解题方便(正交分解) 2.受力分析顺序:G→N→F→电磁力 第五节共点力的平衡条件 共点力 如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。 寻找共点力的平衡条件 1.物体保持静止或者保持匀速直线运动的状态叫平衡状态。 2.物体如果受到共点力的作用且处于平衡状态,就叫做共点力的平衡。 3.二力平衡是指物体在两个共点力的作用下处于平衡状态,其平衡条件是这两个离的大小相等、方向相反。多力亦是如此。 4.正交分解法:把一个矢量分解在两个相互垂直的坐标轴上,利于处理多个不在同一直线上的矢量(力)作用分解。 第六节作用力与反作用力 探究作用力与反作用力的关系 1.一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。 2.力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的) 3.平衡力与相互作用力: 同:等大,反向,共线 异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。 牛顿第三定律 1.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。 2.牛顿第三定律适用于任何两个相互作用的物体,与物体的质量、运动状态无关。二力的产生和消失同时,无先后之分。二力分别作用在两个物体上,各自分别产生作用效果。 第四章力与运动 第一节伽利略理想实验与牛顿第一定律 伽利略的理想实验(见P76、77,以及单摆实验) 牛顿第一定律 1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 物体的运动并不需要力来维持。 2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。 4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。 第二、三节影响加速度的因素/探究物体运动与受力的关系 加速度与物体所受合力、物体质量的关系(实验设计见B书P93) 第四节牛顿第二定律 牛顿第二定律 1.牛顿第二定律:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。 2.a=k F/m(k=1)→F=ma 3.k的数值等于使单位质量的物体产生单位加速度时力的大小。国际单位制中k=1。 4.当物体从某种特征到另一种特征时,发生质的飞跃的转折状态叫做临界状态。 5.极限分析法(预测和处理临界问题):通过恰当地选取某个变化的物理量将其推向极端,从而把临界现象暴露出来。 6.牛顿第二定律特性:1)矢量性:加速度与合外力任意时刻方向相同 2)瞬时性:加速度与合外力同时产生/变化/消失,力是产生加速度的原因。 3)相对性:a是相对于惯性系的,牛顿第二定律只在惯性系中成立。 4)独立性:力的独立作用原理:不同方向的合力产生不同方向的加速度,彼此不受对方影响。 5)同体性:研究对象的统一性。 第五节牛顿第二定律的应用 解题思路:物体的受力情况?牛顿第二定律?a?运动学公式?物体的运动情况 第六节超重与失重 超重和失重 1.物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象(视重>物重),物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象(物重高一物理必修一知识点归纳 第8篇
一.描述运动的量
(1)位移
(2)速度
(3)加速度
二.匀速直线运动
三.匀变速直线运动
(1)公式4个
(2)实例(自由落体丶竖直上抛)
这是基本概念必背!另外再熟读书本左右两边的批注